On the Size Distribution of Levenshtein Balls with Radius One

Geyang Wang* Qi Wang

Department of Computer Science and Engineering Southern University of Science and Technology (SUSTech), China

March 10, 2022

G. Wang*, Q. Wang (SUSTech)

Size Distribution of Levenshtein Balls

WCC 2022 1/23

Table of contents

2 Azuma's inequality

G. Wang*, Q. Wang (SUSTech)

< □ > < 同 > < 回 > < 回 > < 回 >

• Hamming distance:

G. Wang*, Q. Wang (SUSTech)

For two $\mathbf{x}, \mathbf{y} \in \mathbb{Z}_m^n$, $d_H(\mathbf{x}, \mathbf{y}) = \min \#$ substitutions needed to transform \mathbf{x} into \mathbf{y} .

• Hamming distance:

For two $\mathbf{x}, \mathbf{y} \in \mathbb{Z}_m^n$, $d_H(\mathbf{x}, \mathbf{y}) = \min \#$ substitutions needed to transform \mathbf{x} into \mathbf{y} .

• Hamming ball:

G. Wang*, Q. Wang (SUSTech)

For $\boldsymbol{x} \in \mathbb{Z}_m^n$, the Hamming ball centered at \boldsymbol{x} is

 $B_t(\mathbf{x}) := \{\mathbf{y} \in \mathbb{Z}_m^n \mid d_H(\mathbf{x}, \mathbf{y}) \leq t\}.$

(日)

• Hamming distance:

For two $\mathbf{x}, \mathbf{y} \in \mathbb{Z}_m^n$, $d_H(\mathbf{x}, \mathbf{y}) = \min \#$ substitutions needed to transform \mathbf{x} into \mathbf{y} .

• Hamming ball:

For $\mathbf{x} \in \mathbb{Z}_m^n$, the Hamming ball centered at \mathbf{x} is $B_t(\mathbf{x}) := \{\mathbf{y} \in \mathbb{Z}_m^n \mid d_H(\mathbf{x}, \mathbf{y}) \le t\}.$

The size of a Hamming *t*-ball can be explicitly determined:

$$|B_t(\mathbf{x})| = \sum_{i=0}^t \binom{n}{i} (m-1)^i.$$

G. Wang*, Q. Wang (SUSTech)

(日)

• Hamming distance:

For two $\mathbf{x}, \mathbf{y} \in \mathbb{Z}_m^n$, $d_H(\mathbf{x}, \mathbf{y}) = \min \#$ substitutions needed to transform \mathbf{x} into \mathbf{y} .

• Hamming ball:

For $\mathbf{x} \in \mathbb{Z}_m^n$, the Hamming ball centered at \mathbf{x} is $B_t(\mathbf{x}) := \{\mathbf{y} \in \mathbb{Z}_m^n \mid d_H(\mathbf{x}, \mathbf{y}) \le t\}.$

The size of a Hamming *t*-ball can be explicitly determined:

$$|B_t(\mathbf{x})| = \sum_{i=0}^t \binom{n}{i} (m-1)^i.$$

 $|B_t(\mathbf{x})|$ is independent with \mathbf{x} .

G. Wang*, Q. Wang (SUSTech)

Size Distribution of Levenshtein Balls

WCC 2022 3/23

Error-correcting codes in Hamming distance

• For a code $C \subseteq \mathbb{Z}_m^n$,

G. Wang*, Q. Wang (SUSTech)

C can correct t substitution errors.

$$\Leftrightarrow \min\{d_H(\mathbf{x}, \mathbf{y}) \mid \mathbf{x}, \mathbf{y} \in C\} = d \ge 2t + 1.$$

 \Leftrightarrow All $B_t(\mathbf{x})$'s are disjoint.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Error-correcting codes in Hamming distance

• For a code $C \subseteq \mathbb{Z}_m^n$,

C can correct t substitution errors.

$$\Leftrightarrow \min\{d_{\mathcal{H}}(\boldsymbol{x},\boldsymbol{y}) \mid \boldsymbol{x},\boldsymbol{y} \in C\} = d \geq 2t+1.$$

 \Leftrightarrow All $B_t(\mathbf{x})$'s are disjoint.

G. Wang*, Q. Wang (SUSTech)

Insertion/deletion channels

DNA storage systems

Types of errors

• substitution, insertion, deletion.

🖞 picture from Limbachiya et al, Natural data storage: A review on sending information from now to then via nature. 🖃 🔿 🔍

G. Wang*, Q. Wang (SUSTech)

Insertion/deletion channels Levenshtein (edit) distance

For two words *x*, *y*.

Levenshtein (edit) distance: $d_E(\mathbf{x}, \mathbf{y}) = \min \#$ of insertions and deletions needed to transform \mathbf{x} into \mathbf{y} .

Levenshtein balls

For two words $\mathbf{x}, \mathbf{y} \in \mathbb{Z}_m^n$.

G. Wang*, Q. Wang (SUSTech)

Fixed-length Levenshtein (FLL) distance: $d_L(\mathbf{x}, \mathbf{y}) =$ the smallest t such that \mathbf{x} can be transformed into \mathbf{y} by t insertions and t deletions.

$$d_E(\boldsymbol{x},\boldsymbol{y})=2d_L(\boldsymbol{x},\boldsymbol{y}).$$

A (10) < A (10) < A (10) </p>

Levenshtein balls

For two words $\mathbf{x}, \mathbf{y} \in \mathbb{Z}_m^n$.

Fixed-length Levenshtein (FLL) distance: $d_L(\mathbf{x}, \mathbf{y}) =$ the smallest t such that \mathbf{x} can be transformed into \mathbf{y} by t insertions and t deletions.

$$d_E(\boldsymbol{x},\boldsymbol{y})=2d_L(\boldsymbol{x},\boldsymbol{y}).$$

The Levenshtein ball centered at x is

$$L_t(\boldsymbol{x}) := \{ \boldsymbol{y} \in \mathbb{Z}_m^n \mid d_L(\boldsymbol{x}, \boldsymbol{y}) \leq t \},\$$

t is called radius.

G. Wang*, Q. Wang (SUSTech)

What do we know about $L_t(\mathbf{x})$?

"Channels with synchronization errors, including both insertions and deletions as well as more general timing errors, are simply not adequately understood by current theory. Given the near-complete knowledge we have for channels with erasures and errors . . . our lack of understanding about channels with synchronization errors is truly **remarkable**."

— Mitzenmacher, 2009.²

Even the fundamental problem of counting $|L_t(\mathbf{x})|$ still remains elusive!

• Explicit formula of $|L_1(\mathbf{x})|$. Bounds of $|L_t(\mathbf{x})|$ for t > 1;

[2013, Sala and Dolecek³]

• Minimum, maximum and average value of $|L_1(\mathbf{x})|$;

[2021, Bar-Lev, Etzion, and Yaakobi⁴]

⁴On Levenshtein balls with radius one, IEEE ISIT 2021.

G. Wang*, Q. Wang (SUSTech)

Size Distribution of Levenshtein Balls

²A survey of results for deletion channels and related synchronization channels, Probab. Surv. vol. 6, pp. 1-33, 2009.

³Counting sequences obtained from the synchronization channel, IEEE ISIT 2013.

The Size of $L_1(\mathbf{x})$ Runs and maximal alternating segments

G. Wang*, Q. Wang (SUSTech)

The size of $L_1(\mathbf{x})$ is related to the following two functions. For two distinct elements $a, b \in \mathbb{Z}_m$.

< □ > < 同 > < 回 > < 回 > < 回 >

The Size of $L_1(\mathbf{x})$ Runs and maximal alternating segments

G. Wang*, Q. Wang (SUSTech)

The size of $L_1(\mathbf{x})$ is related to the following two functions. For two distinct elements $a, b \in \mathbb{Z}_m$.

• Runs: A maximal subsequence with the form aa...a. $\rho(\mathbf{x}) = \#$ runs in \mathbf{x} .

< □ > < □ > < □ > < □ > < □ > < □ >

The Size of $L_1(\mathbf{x})$

G. Wang*, Q. Wang (SUSTech)

Runs and maximal alternating segments

The size of $L_1(\mathbf{x})$ is related to the following two functions. For two distinct elements $a, b \in \mathbb{Z}_m$.

- Runs: A maximal subsequence with the form aa...a. $\rho(\mathbf{x}) = \#$ runs in \mathbf{x} .
- Maximal alternating segments: A maximal subsequence with the form *abab...ab* or *abab...ba*.

 $a(\mathbf{x}) = \#$ maximal alternating segments in \mathbf{x} .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The Size of $L_1(x)$

G. Wang*, Q. Wang (SUSTech)

Runs and maximal alternating segments

The size of $L_1(\mathbf{x})$ is related to the following two functions. For two distinct elements $a, b \in \mathbb{Z}_m$.

- Runs: A maximal subsequence with the form aa...a. $\rho(\mathbf{x}) = \#$ runs in \mathbf{x} .
- Maximal alternating segments: A maximal subsequence with the form abab...ab or abab...ba.
 a(x) = # maximal alternating segments in x.
- For binary **x**, $\rho(x) + a(x) = n + 1$.

・ 同 ト ・ ヨ ト ・ ヨ ト

The Size of $L_1(\mathbf{x})$

Runs and maximal alternating segments

The size of $L_1(\mathbf{x})$ is related to the following two functions. For two distinct elements $\mathbf{a}, \mathbf{b} \in \mathbb{Z}_m$.

- Runs: A maximal subsequence with the form aa...a. $\rho(\mathbf{x}) = \#$ runs in \mathbf{x} .
- Maximal alternating segments: A maximal subsequence with the form abab...ab or abab...ba.
 a(x) = # maximal alternating segments in x.
- For binary **x**, $\rho(x) + a(x) = n + 1$.

Example

Let $\mathbf{x} = 01100101$.

- Runs: 0,11,00,1,0,1; $\rho(\mathbf{x}) = 6$.
- Maximal alternating segments: 01,10,0101. $a(\mathbf{x}) = 3$.

•
$$\rho(\mathbf{x}) + a(\mathbf{x}) = 9$$

For all $\mathbf{x} \in \mathbb{Z}_m^n$, ⁵

$$|L_1(\mathbf{x})| = \rho(\mathbf{x})(mn - n - 1) + 2 - \frac{1}{2}\sum_{i=1}^{a(\mathbf{x})} s_i^2 + \frac{3}{2}\sum_{i=1}^{a(\mathbf{x})} s_i - a(\mathbf{x}),$$

where s_i , for $1 \le i \le a(\mathbf{x})$, is the length of the *i*-th maximal alternating segment of \mathbf{x} .

Lemma (Bar-Lev et al. ISIT 2021)

G. Wang^{*}, Q. Wang (SUSTech)

Let $n > t \ge 0$. The minimum of $|L_t(\mathbf{x})|$ is obtained if and only if $\mathbf{x} = a^n$ for some $a \in \mathbb{Z}_m$ (eg. $\mathbf{x} = 00...0$). In this case, $L_t(\mathbf{x}) = B_t(\mathbf{x})$.

Size Distribution of Levenshtein Balls

< 回 > < 三 > < 三 >

Lemma (Bar-Lev et al. ISIT 2021)

Let $n > t \ge 0$. The minimum of $|L_t(\mathbf{x})|$ is obtained if and only if $\mathbf{x} = a^n$ for some $a \in \mathbb{Z}_m$ (eg. $\mathbf{x} = 00...0$). In this case, $L_t(\mathbf{x}) = B_t(\mathbf{x})$.

• Minimum size of $L_1(\mathbf{x})$:

G. Wang^{*}, Q. Wang (SUSTech)

$$\min_{\boldsymbol{x}\in\mathbb{Z}_2^n}|L_1(\boldsymbol{x})|=n(m-1)+1.$$

くぼう くほう くほう しほ

Lemma (Bar-Lev et al. ISIT 2021)

Let $n > t \ge 0$. The minimum of $|L_t(\mathbf{x})|$ is obtained if and only if $\mathbf{x} = a^n$ for some $a \in \mathbb{Z}_m$ (eg. $\mathbf{x} = 00...0$). In this case, $L_t(\mathbf{x}) = B_t(\mathbf{x})$.

• Minimum size of $L_1(\mathbf{x})$:

$$\min_{\boldsymbol{x}\in\mathbb{Z}_2^n}|L_1(\boldsymbol{x})|=n(m-1)+1.$$

• Average size of $L_1(x)$:

$$\mathbb{E}_{\mathbf{x}\in\mathbb{Z}_m^n}[|L_1(\mathbf{x})|] = n^2(m+\frac{1}{m}-2) + 2 - \frac{n}{m} + \frac{m^n-1}{m^n(m-1)}.$$

< 同 ト < 三 ト < 三 ト

Lemma (Bar-Lev et al. ISIT 2021)

Let $n > t \ge 0$. The minimum of $|L_t(\mathbf{x})|$ is obtained if and only if $\mathbf{x} = a^n$ for some $a \in \mathbb{Z}_m$ (eg. $\mathbf{x} = 00...0$). In this case, $L_t(\mathbf{x}) = B_t(\mathbf{x})$.

• Minimum size of $L_1(\mathbf{x})$:

$$\min_{\boldsymbol{x}\in\mathbb{Z}_2^n}|L_1(\boldsymbol{x})|=n(m-1)+1.$$

$$\mathop{\mathbb{E}}_{\boldsymbol{x}\in\mathbb{Z}_m^n}[|L_1(\boldsymbol{x})|] = n^2(m+\frac{1}{m}-2) + 2 - \frac{n}{m} + \frac{m^n-1}{m^n(m-1)}.$$

• Maximum size of $L_1(\mathbf{x})$:

$$\max_{\mathbf{x}\in\mathbb{Z}_m^n} |L_1(\mathbf{x})| = \begin{cases} n^2(m-1) - n + 2, & \text{if } m > 2; \\ n^2 - \sqrt{2}n^{\frac{3}{2}} + O(n), & \text{if } m = 2. \end{cases}$$

G. Wang*, Q. Wang (SUSTech)

Size Distribution of Levenshtein Balls

WCC 2022 11/23

We study the distribution of $|L_1(\mathbf{x})|$ for random \mathbf{x} 's.

The distribution of $L_1(x)$, where $x \in \mathbb{Z}_2^{100}$. min_x $|L_1(x)| = 101, \mathbb{E}[|L_1(x)|] = 4953$. max_x $|L_1(x)| \ge 9902$.

WCC 2022 12/23

Martingale

Definition (martingale)

G. Wang*, Q. Wang (SUSTech)

A martingale is a sequence of real random variables Z_0, \ldots, Z_n with finite expectation such that for each $0 \le i < n$,

$$\mathbb{E}\left[Z_{i+1}|Z_i,Z_{i-1},\ldots,Z_0\right]=Z_i.$$

< □ > < 同 > < 回 > < 回 > < 回 >

Martingale

Definition (martingale)

A martingale is a sequence of real random variables Z_0, \ldots, Z_n with finite expectation such that for each $0 \le i < n$,

$$\mathbb{E}\left[Z_{i+1}|Z_i,Z_{i-1},\ldots,Z_0\right]=Z_i.$$

Let X_1, \ldots, X_n be the underlying random variables (not necessary independent) and f be a function over X_1, \ldots, X_n . The Doob martingale Z_0, \ldots, Z_n is defined by

$$Z_0 = \mathbb{E} [f(X_1, \dots, X_n)];$$

$$Z_i = \mathbb{E} [f(X_1, \dots, X_n) | X_1, \dots, X_i] \text{ for } i \in [n].$$

Note: $[n] = \{1, 2, ..., n\}, Z_n = f(X_1, ..., X_n).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Azuma's inequality ⁶

Let Z_0, Z_1, \ldots, Z_n be a martingale such that for each $i \in [n]$,

$$|Z_i-Z_{i-1}|\leq c_i.$$

Then for every $\lambda > 0$, we have

$$\Pr(Z_n - Z_0 \ge \lambda) \le \exp\left(\frac{-\lambda^2}{2(c_1^2 + \cdots + c_n^2)}\right),$$

and

$$\Pr(Z_n - Z_0 \leq -\lambda) \leq \exp\left(\frac{-\lambda^2}{2(c_1^2 + \cdots + c_n^2)}\right).$$

⁶Alon, Noga, and Joel H. Spencer. *The probabilistic method*. John Wiley & Sons, 2016. G. Wang^{*}, Q. Wang (SUSTech) Size Distribution of Levenshtein Balls WCC 2022 14/23

Main results (binary case)

Let n > 3 be an integer⁷ and x_1, \ldots, x_n be independent random variables such that $Pr(x_i = 0) = Pr(x_i = 1) = \frac{1}{2}$ for $i \in [n]$. Then for the word $\mathbf{x} = x_1, \ldots, x_n$, we have

$$\Pr\left(|L_1(\mathbf{x})| - \mathbb{E}_{\mathbf{x} \in \mathbb{Z}_2^n}[|L_1(\mathbf{x})|] \ge cn\sqrt{n-1}\right) \le e^{-2c^2},$$

and

$$\mathsf{Pr}\left(|\mathcal{L}_1(\mathbf{x})| - \mathop{\mathbb{E}}_{\mathbf{x} \in \mathbb{Z}_2^n}[|\mathcal{L}_1(\mathbf{x})|] \leq -cn\sqrt{n-1}\right) \leq e^{-2c^2},$$

where $\mathbb{E}_{\boldsymbol{x} \in \mathbb{Z}_2^n}[|L_1(\boldsymbol{x})|] = \frac{n^2}{2} - \frac{n}{2} - \frac{1}{2^n} + 3$, and *c* is a positive constant.

⁷The case when $n \leq 3$ is trivial.

G. Wang*, Q. Wang (SUSTech)

Main results (*m*-ary case)

Let m > 2, n > 3 be integers, and x_1, \ldots, x_n be independent random variables such that $Pr(x_i = j) = \frac{1}{m}$ for $i \in [n], j \in \mathbb{Z}_m$. Then for the word $\mathbf{x} = x_1, \ldots, x_n$, we have

$$\Pr\left(|L_1(\boldsymbol{x})| - \underset{\boldsymbol{x} \in \mathbb{Z}_m^n}{\mathbb{E}}[|L_1(\boldsymbol{x})|] \ge c(m + \frac{1}{m})n\sqrt{n-1}\right) \le e^{-c^2/2},$$

and

$$\Pr\left(|L_1(\mathbf{x})| - \mathop{\mathbb{E}}_{\mathbf{x} \in \mathbb{Z}_m^n} [|L_1(\mathbf{x})|] \le -c(m + \frac{1}{m})n\sqrt{n-1}\right) \le e^{-c^2/2},$$

re $\mathbb{E}\left[|L_1(\mathbf{x})|\right] = n^2(m + \frac{1}{n} - 2) + 2 - \frac{n}{n} + \frac{1}{n-1} - \frac{1}{n-1}$ and c is

where $\mathbb{E}_{\mathbf{x}\in\mathbb{Z}_{m}^{n}}[|L_{1}(\mathbf{x})|] = n^{2}(m+\frac{1}{m}-2) + 2 - \frac{n}{m} + \frac{1}{m-1} - \frac{1}{m^{n}(m-1)}$, and *c* is a positive constant.

・ロト ・ 戸 ・ ・ ヨ ト ・ ヨ ・ うゅつ

Proof of the binary case (sketch) I

Recall that for $\boldsymbol{x} \in \mathbb{Z}_m^n$,

$$|L_1(\mathbf{x})| = \rho(\mathbf{x})(mn - n - 1) + 2 - \frac{1}{2}\sum_{i=1}^{a(\mathbf{x})} s_i^2 + \frac{3}{2}\sum_{i=1}^{a(\mathbf{x})} s_i - a(\mathbf{x}),$$

Putting m = 2, we have

$$|L_1(\mathbf{x})| =
ho(\mathbf{x})(n-1) + 2 - rac{1}{2}\sum_{i=1}^{a(\mathbf{x})} s_i^2 + rac{3n}{2} - a(\mathbf{x}).$$

Recall that $a(\mathbf{x}) + \rho(\mathbf{x}) = n + 1$ for m = 2, we have

$$|L_1(\mathbf{x})| = \rho(\mathbf{x})n - \frac{1}{2}\sum_{i=1}^{a(\mathbf{x})} s_i^2 + \frac{n}{2} + 1.$$

G. Wang*, Q. Wang (SUSTech)

イロト イボト イヨト イヨト

Proof of the binary case (sketch) II

Define

$$f_n(\mathbf{x}) = \rho(\mathbf{x})n - \frac{1}{2}\sum_{i=1}^{a(\mathbf{x})} s_i^2.$$

Then $|L_1(\mathbf{x})| = f_n(\mathbf{x}) + 1 + \frac{n}{2}$, it suffices to consider the distribution of $f_n(\mathbf{x})$. Define the Doob martingale $Z_0 = \mathbb{E}[f_n(\mathbf{x})], Z_i = \mathbb{E}[f_n(\mathbf{x})|x_1, \dots, x_i]$.

Claim

$$|Z_1 - Z_0| = 0;$$

 $|Z_i - Z_{i-1}| \le \frac{n}{2}$ for $2 \le i \le n.$

Then by Azuma's inequality, we have $\Pr(Z_n - Z_0 \ge \lambda) \le \exp\left(\frac{-2\lambda^2}{n^2(n-1)}\right)$. Take $\lambda = cn\sqrt{n-1}$, the result then follows.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Proof of the claim

First, show that

$$f_n(\mathbf{x}) = \begin{cases} f_n(\mathbf{x}_{[1,i]}) + f_n(\mathbf{x}_{[i+1,n]}) - n & \text{if } x_i = x_{i+1}, \\ f_n(\mathbf{x}_{[1,i]}) + f_n(\mathbf{x}_{[i+1,n]}) - t(\mathbf{x}_{[1,i]})h(\mathbf{x}_{[i+1,n']}) & \text{if } x_i \neq x_{i+1}. \end{cases}$$

•
$$\mathbf{x}_{[1,i]} = (x_1, x_2, \dots, x_i).$$

• $h(\cdot), t(\cdot) = \text{length of the first/last maximal alternating segment.}$ Then calculate Z_i .

$$Z_{i} = \mathbb{E}\left[f_{n}(\boldsymbol{x}) \mid \boldsymbol{x}_{[1,i]}\right] = \frac{1}{2}\mathbb{E}\left[f_{n}(\boldsymbol{x}) \mid \boldsymbol{x}_{[1,i]}, x_{i+1} = x_{i}\right] + \frac{1}{2}\mathbb{E}\left[f_{n}(\boldsymbol{x}) \mid \boldsymbol{x}_{[1,i]}, x_{i+1} \neq x_{i}\right].$$

Finally, bound $|Z_i - Z_{i-1}|$.

WCC 2022 19/23

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof of the *m*-ary case (sketch)

Define

$$f_{m,n}(\mathbf{x}) = \rho(\mathbf{x})(mn-n-1) - \frac{1}{2}\sum_{i=1}^{a(\mathbf{x})} s_i^2 + \frac{3}{2}\sum_{i=1}^{a(\mathbf{y})} s_i - a(\mathbf{x}).$$

Then for $\mathbf{x} \in \mathbb{Z}_m^n$, $|L_1(\mathbf{x})| = f_{m,n}(\mathbf{x}) + 2$. Define Doob martingale $Z_0 = \mathbb{E}[f_{m,n}(\mathbf{x})], Z_i = \mathbb{E}[f_{m,n}(\mathbf{x})|x_1, \dots, x_i]$. Then estimate Z_i by "breaking" $f_{m,n}(\mathbf{x})$ into two parts and bounding the differences, we have

$$|Z_i - Z_{i-1}| \leq \begin{cases} 0, & \text{if } i = 1; \\ n(m + \frac{1}{m} - 2) + 3, & \text{if } i = 2; \\ n(m + \frac{1}{m}), & \text{if } 2 < i < n - 1; \\ n(m - 1), & \text{if } i = n - 1; \\ n(m + \frac{1}{m} - 2), & \text{if } i = n; \end{cases}$$

The result then follows from Azuma's inequality.

G. Wang*, Q. Wang (SUSTech)

• We prove that the size of the Levenshtein ball with radius one is highly concentrated around its mean.

⁸Gilbert-Varshamov-like lower bounds for deletion-correcting codes, 2014 IEEE ITW > < 🗇 > < 🖹 > < 🖹 > 🖉 🔊 🔍

Size Distribution of Levenshtein Balls

- We prove that the size of the Levenshtein ball with radius one is highly concentrated around its mean.
- Explicitly determine or improve the bounds on $|L_t(\mathbf{x})|$ for t > 1.

Size Distribution of Levenshtein Balls

- We prove that the size of the Levenshtein ball with radius one is highly concentrated around its mean.
- Explicitly determine or improve the bounds on $|L_t(\mathbf{x})|$ for t > 1.
- Study the size distribution for $|L_t(\mathbf{x})|$.

⁸ Gilbert-Varshamov-like lower bounds for deletion-correcting codes, 2014 IEEE ITW \rightarrow $\langle \mathcal{D} \rightarrow$ $\langle \mathbb{D} \rightarrow$

- We prove that the size of the Levenshtein ball with radius one is highly concentrated around its mean.
- Explicitly determine or improve the bounds on $|L_t(\mathbf{x})|$ for t > 1.
- Study the size distribution for $|L_t(\mathbf{x})|$.
- Let $C_m(n, t)$ denote the size of the largest *t*-insertion-deletion-correcting code over \mathbb{Z}_m^n . Improve the bound on $C_m(n, t)$.

Connection⁸ between codes and independent set of graphs. Let $V = \mathbb{Z}_m^n$ and $(\mathbf{x}, \mathbf{y}) \in E$ iff $d_L(\mathbf{x}, \mathbf{y}) \leq t$. Gilbert-Vashamov bound, Turan's theorem, Caro-Wei bound...

⁸Gilbert-Varshamov-like lower bounds for deletion-correcting codes, 2014 IEEE ITW 🕨 🛛 🖓 🕨 💐 🛬 🕨

On the Size Distribution of Levenshtein Balls with Radius One

Geyang Wang* Qi Wang

Department of Computer Science and Engineering Southern University of Science and Technology (SUSTech), China

March 10, 2022

G. Wang*, Q. Wang (SUSTech)

Size Distribution of Levenshtein Balls

WCC 2022 22 / 23

Levenshtein balls and insertion/deletion codes

Let G(V, E) be a simple graph such that

•
$$V = \mathbb{Z}_m^n$$

• $(\mathbf{x}, \mathbf{y}) \in E$ iff $d_L(\mathbf{x}, \mathbf{y}) \leq t$.

Therefore, for a (t, t)-deletion-insertion correcting code $C \subseteq \mathbb{Z}_m^n$.

- for every $\mathbf{x}, \mathbf{y} \in C$, $d_L(\mathbf{x}, \mathbf{y}) > t$.
- \Leftrightarrow C forms an independent set of G.

Caro-Wei bound (Yair Caro 1979, V.K.Wei. 1981):

$$lpha({\it G})\geq \sum_{{\it x}\in \mathbb{Z}_m^n}rac{1}{1+\deg({\it x})}.$$

• $\alpha(G)$: the size of the largest independent set in G.

• deg $(\mathbf{x}) = |L_t(\mathbf{x})|$.

Therefore, a lower bound of |C| could be derived from $|L_t(\mathbf{x})|$ [Sala, Dolecek,⁹].

⁹Gilbert-Varshamov-like lower bounds for deletion-correcting codes, 2014 IEEE ITW → < @ → < ≧ → <

Size Distribution of Levenshtein Balls